ESZ pyramid bearing

Unreinforced profiled elastomer bearing with general supervisory approval

Calculation example
Proof of permissible compression:

Weilerhöfe 1
41564 Kaarst-Büttgen
Telefon (0 21 31) 758100
Telefax (0 21 31) 758111
E-Mail: info@esz-becker.de

The ESZ pyramid bearing is certified for bearing classes 1 and 2 according to DIN 4141-3.
The permissible characteristic bearing compression perm s_{m} is determined depending on the form factor S and is limited to $10 \mathrm{~N} / \mathrm{mm}^{2}$. Due to the profiling, the nominal thickness of $t=10 \mathrm{~mm}$ is not applied, but rather the thickness of the bearing in the loaded condition, $\mathrm{t}_{\mathrm{b}}=7 \mathrm{~mm}$.

$$
S=\frac{a \times b}{2 \times t_{b} \times(a+b)}
$$

$\sigma_{m}=\frac{F}{a \times b} \leq \operatorname{perm}_{m}=2 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \times S \leq 10 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$

Example of a calculatory stress verification:
Bearing side $a=100 \mathrm{~mm}$
Bearing side $b=200 \mathrm{~mm}$
$\mathrm{G}_{\mathrm{k}}=100 \mathrm{kN} \& \mathrm{Q}_{\mathrm{k}}=50 \mathrm{kN} \Rightarrow$ bearing class 1
$F_{\text {z, max }}=150 \mathrm{kN}$
$S=\frac{100 \times 200}{2 \times 7 \times(100+200)}=4,76$
$\sigma_{m}=\frac{150000}{100 \times 200} \leq$ perm $\sigma_{m}=2 \times 4,76$
$\sigma_{m}=7,5 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \leq \operatorname{perm} \sigma_{m}=9,52 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
The pyramid bearing of the size of $100 \times 200 \mathrm{~mm}$ can thus be loaded up to $9.52 \mathrm{~N} / \mathrm{mm}^{2}$.

CALCULATION OF THE PERMISSIBLE SUPPORT TORSION

The support torsion is to be verified by the empirical formula from the approval. For the torsion, only half the time-dependent deformations (creep, shrinkage) need be applied, plus the support imperfections (F1). A separate verification is to be made for each side in case of torsion across both bearing sides positioned at a right angle to one another. The following boundary condition is to be adhered to:
$\alpha \leq \operatorname{perm} \alpha=\frac{2,5}{c}+\frac{210}{c^{2}}-\frac{1900}{c^{3}} \times$ perm σ_{m} \mathbf{c} is the length $[\mathrm{mm}]$ of the respectively stressed bearing side

$$
\left(\frac{0,625}{c}+0,01\right)=\alpha_{\text {Im perfection }} \quad{ }_{s}(F 1)
$$

Example of calculatory bearing torsion:
A torsion of 2.2% acts on bearing side $b=200$ mm on the pyramid bearing calculated above. The total anglSe of rotation is 15.325% plus the imperfections.
$\alpha_{b}=\left(\frac{0,625}{200}+0,01\right)+0,0022=0,15325$
With the bearing side $\mathrm{b}=200 \mathrm{~mm}$ and the permissible stress perms $=9.52 \mathrm{~N} / \mathrm{mm}^{2}$ we go into the boundary condition of the torsion:
$\alpha_{b} \leq$ perm $\alpha_{b}=\frac{2,5}{200}+\frac{210}{200^{2}}-\frac{1900}{200^{3}} \times 9,52$
0,015325 <perm $\alpha_{b}=0,01548$
The permissible torsion for this bearing is 15.48%. Therefore the verification of the bearing torsion is provided.

