ESZ type 100 | with national technical approval General information and calculation basis

Character meanings in the formula

f _{tRd}	=	Calculated value of the internal resistance of the bearing [N/mm²]
G	=	Shear modulus [N/mm²]
a	=	shorter side of the bearing [mm]
b	=	Longer side of the bearing [mm]
t	=	Bearing thickness [mm]
α_{bd}	=	Angular rotation around the axis parallel to the bearing side b [‰]
α_{ad}	=	Angular rotation around the axis parallel to the bearing side a [‰]
С	=	Mainly loaded bearing side of a rectangular bearing [mm]
η 2	=	Aspect ratio coefficient

b/a	η_2	
1	0,208	
1,5	0,231	
2	0,246	
3	0,267	
4	0,282	
6	0,299	
8	0,307	
10	0,313	
∞	0,333	

Table 1:

 η_2 as a function of the aspect ratio b/a as a table of values

(Intermediate values may be interpolated linearly)

$$f_{tRd} = \frac{R_{\perp d}}{\eta_2} \cdot \frac{t}{a}$$

 f_{tRd} is the calculated value of the internal resistance of the bearing and is used to calculate the permissible compressive stress $\sigma_{z,Rd}$

	Shape factor range S (S, S borehole Or Smod)	Function for determining the design value of the load-bearing capacity $R_{\perp d}$ [N/mm 2]
	0.83 - 2.33	$R_{\perp d} = 5.3805 \cdot S - 0.6536$
Point and strip bearings	2.33 – 2.50	$R_{\perp d} = 10.635 \cdot S - 12.89$
Follit and strip bearings	2.50 – 5.00	$R_{\perp d} = 8.4004 \cdot S - 7.3293$
	≥ 5.00	$R_{\perp d} = 34.7$

Table 2

 $R_{\perp d}$ = Rated value of the associated load-bearing capacity of the bearing [N/mm²] perpendicular to the bearing plane as a function of the shape factor S at a compression $\varepsilon = 40 \%$.

ESZ type 100 | with national technical approval General information and calculation basis

Initial assumptions

F _{z,max,d}	=	185	kN
f _{tRd}	=	Formula	N/mm²
a	=	130	mm
b	=	150	mm
t	=	15	mm
G	=	1.2	N/mm²
$\alpha_{Statics}$	=	5.2	‰
αobliqueness	=	10	‰
α _{Unevenness}	=	4.8	‰
α _{bd total}	=	20	‰
η_2	=	0.215	

In this calculation example, a rotation around the axis parallel to the bearing side b (α_{bd}) is calculated. The bearing has no holes.

Calculation wax

$$S = \frac{130 \cdot 150}{2 \cdot 15 \cdot (130 + 150)} = 2.32$$

$$R_{\perp d} = 5.3805 \cdot S - 0.6536 = 17.17 \cdot 2.32 - 0.6536 = 11.83 \text{ N/mm}^2$$

$$f_{tRd} = \frac{11.83}{0.215} \cdot \frac{15}{130} = 6.35 \text{ N/mm}^2$$

$$\sigma_{z,Rd} = \left[6.35 - 0.02 \cdot \frac{1.2}{2} \cdot \left(\frac{130}{15}\right)^2 - 0 \cdot \frac{1.2}{2} \cdot \left(\frac{150}{15}\right)^2\right] \cdot \frac{130}{15} \cdot 0.215 = \mathbf{10}.\,\mathbf{15}\,\mathbf{N/mm^2}$$

$$\sigma_{z,m} = \frac{185.000}{130 \cdot 150} = 9.49 \text{ N/mm}^2$$

 $\sigma_{z,Rd} =$ 10. 14 N/mm² $\, \geq \sigma_{m} =$ 9.49 N/mm² > Proof provided!

Weilerhöfe 1 41564 Kaarst-Büttgen Phone: +49 2131 75 81 00 Fax: +49 2131 75 81 11 info@esz-becker.de