ESZ type 100 | with national technical approval General information and calculation basis

Character meanings in the formula

```
f
ftRd = resistance of the bearing [N/mm}\mp@subsup{}{}{2}
G = Shearmodulus[N/mm
a = shorter side of the bearing [mm]
b = Longer side of the bearing [mm]
t = Bearing thickness [mm]
\mp@subsup{\alpha}{bd}{}}=\mathrm{ Angular rotation around the axis
\mp@subsup{\alpha}{bd}{}}
ad}=\mathrm{ Angular rotation around the axis
\mp@subsup{\alpha}{ad}{}}=\quad\mathrm{ parallel to the bearing side a [%o]
c = Mainly loaded bearing side of a
c rectangular bearing [mm]
\eta
```

b/a	η_{2}
1	0,208
1,5	0,231
2	0,246
3	0,267
4	0,282
6	0,299
8	0,307
10	0,313
∞	0,333

Table 1:
η_{2} as a function of the aspect ratio b/a as a table of values
(Intermediate values may be interpolated linearly)
$f_{t R d}=\frac{R_{\perp d}}{\eta_{2}} \cdot \frac{t}{a} \quad \begin{aligned} & f_{\text {trd }} \text { is the calculated value of the internal resistance of the bearing and is used } \\ & \text { to calculate the permissible compressive stress } \sigma_{z, R d}\end{aligned}$

	Shape factor range S ($\mathrm{S}, \mathrm{S}_{\text {borehole }}$ Or $\mathrm{S}_{\text {mod }}$)	Function for determining the design value of the load-bearing capacity $R_{\perp d}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$
Point and strip bearings	0.83-2.33	$\mathrm{R}_{\perp \mathrm{d}}=5.3805 \cdot \mathrm{~S}-0.6536$
	2.33-2.50	$\mathrm{R}_{\mathrm{Ld}^{\prime}}=10.635 \cdot \mathrm{~S}-12.89$
	2.50-5.00	$\mathrm{R}_{ \pm d}=8.4004 \cdot \mathrm{~S}-7.3293$
	≥ 5.00	$\mathrm{R}_{\perp \mathrm{d}}=34.7$

Table 2:
$\mathbf{R}_{\perp_{d}}=$ Rated value of the associated load-bearing capacity of the bearing [$\mathrm{N} / \mathrm{mm}^{2}$] perpendicular to the bearing plane as a function of the shape factor S at a compression $\varepsilon=40 \%$.

ESZ type 100 | with national technical approval General information and calculation basis

Initial assumptions

$\mathbf{F}_{\text {Z,max,d }}$	$=185$	kN
$\mathbf{f}_{\text {tRd }}$	$=$ Formula	$\mathrm{N} / \mathrm{mm}^{2}$
\mathbf{a}	$=130$	mm
\mathbf{b}	$=150$	mm
\mathbf{t}	$=15$	mm
\mathbf{G}	$=1.2$	$\mathrm{~N} / \mathrm{mm}^{2}$
$\boldsymbol{\alpha}_{\text {Statics }}$	$=5.2$	$\%$
$\boldsymbol{\alpha}_{\text {Obliqueness }}$	$=10$	$\%$
$\boldsymbol{\alpha}_{\text {Unevenness }}$	$=4.8$	$\%$
$\boldsymbol{\alpha}_{\text {bd total }}$	$=20$	$\%$
\boldsymbol{n}_{2}	$=0.215$	

In this calculation example, a rotation around the axis parallel to the bearing side $b\left(\alpha_{b d}\right)$ is calculated. The bearing has no holes.

Calculation wax

$$
\begin{aligned}
& \mathrm{S}=\frac{130 \cdot 150}{2 \cdot 15 \cdot(130+150)}=2.32 \\
& \mathrm{R}_{\perp \mathrm{d}}=5.3805 \cdot \mathrm{~S}-0.6536=17.17 \cdot 2.32-0.6536=11.83 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{f}_{\mathrm{tRd}}=\frac{11.83}{0.215} \cdot \frac{15}{130}=6.35 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{z}, \mathrm{Rd}}=\left[6.35-0.02 \cdot \frac{1.2}{2} \cdot\left(\frac{130}{15}\right)^{2}-0 \cdot \frac{1.2}{2} \cdot\left(\frac{150}{15}\right)^{2}\right] \cdot \frac{130}{15} \cdot 0.215=\mathbf{1 0 . 1 5} \mathrm{N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{z}, \mathrm{~m}}=\frac{185.000}{130 \cdot 150}=\mathbf{9 . 4 9 \mathbf { N } / \mathrm { mm } ^ { 2 }} \\
& \sigma_{\mathrm{z}, \mathrm{Rd}}=\mathbf{1 0 . 1 4 ~ N} / \mathrm{mm}^{2} \geq \sigma_{\mathrm{m}}=9.49 \mathrm{~N} / \mathrm{mm}^{2}>\text { Proof provided! }
\end{aligned}
$$

