ESZ Typ 200 | mit allgemeiner bauaufsichtlicher Zulassung Allgemeine Angaben und Berechnungsgrundlagen

Zeichenbedeutungen in der Formel

$\mathrm{f}_{\text {trd }}$	$=\begin{aligned} & \text { Rechenwert des inneren } \\ & \text { Widerstands des Lagers }\left[\mathrm{N} / \mathrm{mm}^{2}\right] \end{aligned}$
G	$=$ Schubmodul [$\mathrm{N} / \mathrm{mm}^{2}$]
a	= kürzere Seite des Lagers [mm]
b	= längere Seite des Lagers [mm]
t	= Lagerdicke [mm]
$\alpha_{\text {bd }}$	= Winkelverdrehung um die Achse parallel zur Lagerseite b [\%]
$\alpha_{\text {ad }}$	= Winkelverdrehung um die Achse parallel zur Lagerseite a [\%]
c	$=\begin{gathered}\text { hauptbeanspruchte Lagerseite eines } \\ \text { rechteckigen Lagers [mm] }\end{gathered}$
n_{2}	= Seitenverhältnisbeiwert

\mathbf{b} / \mathbf{a}	$\boldsymbol{\eta}_{2}$
1	0,208
1,5	0,231
2	0,246
3	0,267
4	0,282
6	0,299
8	0,307
10	0,313
∞	0,333

Tabelle 1:
$\boldsymbol{\eta}_{2}$ in Abhängigkeit des Seitenverhältnisses b/a als Wertetabelle
(Zwischenwerte dürfen linear interpoliert werden)
$f_{t R d}=\frac{R_{\perp d}}{\eta_{2}} \cdot \frac{t}{a} \quad \begin{aligned} & f_{\text {trd }} \text { ist der Rechenwert des inneren Widerstands des Lagers und wird für die } \\ & \text { Berechnung der zulässigen Druckspannung } \boldsymbol{\sigma}_{\text {a }}\end{aligned}$ Berechnung der zulässigen Druckspannung $\boldsymbol{\sigma}_{\text {z,Rd }}$ hinzugezogen.

	Formfaktorbereich S (S , $\mathrm{S}_{\text {Botrung }}$ oder $\mathrm{S}_{\text {rund }}$)	Funktion zur Ermittlung des Bemessungswerts der Tragfähigkeit $\mathrm{R}_{\mathrm{d}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$
Punkt- und Streifenlager	0,88-3,75	$\mathrm{R}+_{\mathrm{d}}=17,17 \cdot \mathrm{~S}-11,32$
	3,75-4,00	$\mathrm{R}_{\mathrm{d}_{\mathrm{d}}}=35,94 \cdot \mathrm{~S}-81,67$
	4,00-10,00	$\mathrm{R}_{\mathrm{d}_{\mathrm{d}}}=1,17 \cdot \mathrm{~S}+57,39$
	$\geq 10,00$	$\mathrm{R}_{\mathrm{d}^{\prime}}=69,10$
Runde Lager	0,88-5,00	$\mathrm{R}_{\mathrm{d}_{\mathrm{d}}}=1,85 \cdot \mathrm{~S}^{2}+11,43 \cdot \mathrm{~S}-6,4$
	$\geq 5,00$	$\mathrm{R}_{\mathrm{d}_{\mathrm{d}}}=96,90$

Tabelle 2:
$\mathbf{R}_{\perp_{d}}=$ Bemessungswert der zugehörigen Tragfähigkeit des Lagers [$\mathrm{N} / \mathrm{mm}^{2}$] senkrecht zur Lagerebene in Abhängigkeit des Formfaktors S bei einer Stauchung $\varepsilon=40 \%$.

ESZ Typ 200 | mit allgemeiner bauaufsichtlicher Zulassung Allgemeine Angaben und Berechnungsgrundlagen

Ausgangsannahmen

$\mathrm{F}_{\text {, max, }}$	$=$	420	kN
$\mathrm{f}_{\text {tRd }}$	=	Formel	$\mathrm{N} / \mathrm{mm}^{2}$
a	=	130	mm
b	=	150	mm
t	=	15	mm
G	=	1,5	$\mathrm{N} / \mathrm{mm}^{2}$
$\alpha_{\text {Statik }}$	=	5,2	\%
$\boldsymbol{\alpha}_{\text {Schiefwinkligkeit }}$	=	10	\%
$\alpha_{\text {Unebenheit }}$	=	4,8	\%
$\boldsymbol{\alpha}_{\text {bd gesamt }}$	=	20	\%
n_{2}	=	0,215	

In diesem Berechnungsbeispiel wird mit einer Verdrehung um die Achse parallel zur Lagerseite b ($a_{b d}$) gerechnet.
Das Lager hat keine Bohrungen.

Rechenweg

$S=\frac{130 \cdot 150}{2 \cdot 15 \cdot(130+150)}=2,32$
$R_{\perp d}=17,17 \cdot S+11,32=17,17 \cdot 2,32-11,32=28,51 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{tRd}}=\frac{28,51}{0,215} \cdot \frac{15}{130}=\mathbf{1 5}, \mathbf{3 0} \mathbf{N} / \mathbf{m m}^{2}$
$\sigma_{\mathrm{z}, \mathrm{Rd}}=\left[15,30-0,02 \cdot \frac{1,5}{2} \cdot\left(\frac{130}{15}\right)^{2}-0 \cdot \frac{1,5}{2} \cdot\left(\frac{150}{15}\right)^{2}\right] \cdot \frac{130}{15} \cdot 0,215=\mathbf{2 6}, \mathbf{4 0} \mathbf{N} / \mathbf{m m}^{2}$
$\sigma_{z, m}=\frac{420.000}{130 \cdot 150}=\mathbf{2 1}, \mathbf{5 4} \mathbf{N} / \mathbf{m m}^{2}$
$\sigma_{\mathrm{z}, \mathrm{Rd}}=26,40 \mathrm{~N} / \mathrm{mm}^{2} \geq \sigma_{\mathrm{m}}=21,54 \mathrm{~N} / \mathrm{mm}^{2}>$ Nachweis erbracht!

