ESZ Typ 150 | mit allgemeiner bauaufsichtlicher Zulassung Allgemeine Angaben und Berechnungsgrundlagen

Zeichenbedeutungen in der Formel

f _{tRd}	=	Rechenwert des inneren Widerstands des Lagers [N/mm²]
G	=	Schubmodul [N/mm²]
a	=	kürzere Seite des Lagers [mm]
b	=	längere Seite des Lagers [mm]
t	=	Lagerdicke [mm]
α_{bd}	=	Winkelverdrehung um die Achse parallel zur Lagerseite b [‰]
α_{ad}	=	Winkelverdrehung um die Achse parallel zur Lagerseite a [‰]
С	=	hauptbeanspruchte Lagerseite eines rechteckigen Lagers [mm]
η_2	=	Seitenverhältnisbeiwert

b/a	η ₂	
1	0,208	
1,5	0,231	
2	0,246	
3	0,267	
4	0,282 0,299	
6		
8	0,307	
10	0,313	
∞	0,333	

Tabelle 1:

 η_2 in Abhängigkeit des Seitenverhältnisses b/a als Wertetabelle (Zwischenwerte dürfen linear interpoliert werden)

$$f_{tRd} = \frac{R_{\perp d}}{\eta_2} \cdot \frac{t}{a}$$

 f_{tRd} ist der Rechenwert des inneren Widerstands des Lagers und wird für die Berechnung der zulässigen Druckspannung $\sigma_{z,Rd}$ hinzugezogen.

	Formfaktorbereich S (S, S _{Bohrung} oder S _{mod})	Funktion zur Ermittlung des Bemessungswerts der Tragfähigkeit R _{1d} [N/mm²]	
	0,88 - 5,00	$R_{\perp d} = 7,22 \cdot S - 3,39$	
Punkt- und Streifenlager	5,00 - 7,00	$R_{\perp d} = 8,95 \cdot S - 12,02$	
Fullki- ullu Strellelltager	7,00 - 10,00	$R_{\perp d} = 1,96 \cdot S + 36,86$	
	≥ 10,00	$R_{\perp d} = 56,50$	

Tabelle 2:

 $R_{\perp d}$ = Bemessungswert der zugehörigen Tragfähigkeit des Lagers [N/mm²] senkrecht zur Lagerebene in Abhängigkeit des Formfaktors S bei einer Stauchung ε = 40 %.

Weilerhöfe 1 41564 Kaarst-Büttgen Tel.: +49 2131 75 81 00

Fax.: +49 2131 75 81 11 info@esz-becker.de

ESZ Typ 150 | mit allgemeiner bauaufsichtlicher Zulassung Allgemeine Angaben und Berechnungsgrundlagen

Ausgangsannahmen

$F_{z,max,d}$	=	200	kN
f _{tRd}	=	Formel	N/mm²
a	=	130	mm
b	=	150	mm
t	=	15	mm
G	=	1,2	N/mm²
α _{Statik}	=	5,2	‰
α Schiefwinkligkeit	=	10	‰
α _{Unebenheit}	=	4,8	‰
α _{bd gesamt}	=	20	‰
η 2	=	0,215	

In diesem Berechnungsbeispiel wird mit einer Verdrehung um die Achse parallel zur Lagerseite b (α_{bd}) gerechnet.

Das Lager hat keine Bohrungen.

Rechenweg

$$S = \frac{130 \cdot 150}{2 \cdot 15 \cdot (130 + 150)} = 2,32$$

$$R_{\perp d} = 7,22 \cdot S - 3,39 = 7,22 \cdot 2,32 - 3,39 = 13,36 \text{ N/mm}^2$$

$$f_{tRd} = \frac{13,37}{0,215} \cdot \frac{15}{130} = 7,18 \text{ N/mm}^2$$

$$\sigma_{z,Rd} = \left[7,18 - 0.02 \cdot \frac{1.2}{2} \cdot \left(\frac{130}{15}\right)^2 - 0 \cdot \frac{1.2}{2} \cdot \left(\frac{150}{15}\right)^2\right] \cdot \frac{130}{15} \cdot 0.215 = \mathbf{11}, \mathbf{70} \, \mathbf{N/mm}^2$$

$$\sigma_{z,m} = \frac{200.000}{130 \cdot 150} =$$
10,26 N/mm²

 $\sigma_{z,Rd}=$ 11, 70 N/mm² $\,\geq\,\sigma_{m}=$ 10,26 N/mm² > Nachweis erbracht!

Weilerhöfe 1 41564 Kaarst-Büttgen Tel.: +49 2131 75 81 00 Fax.: +49 2131 75 81 11

rax.: +49 2131 75 81 info@esz-becker.de Startseite **D**