ESZ Typ 150 | mit allgemeiner bauaufsichtlicher Zulassung Allgemeine Angaben und Berechnungsgrundlagen

Zeichenbedeutungen in der Formel

$\mathrm{f}_{\text {trd }}$	$=\begin{aligned} & \text { Rechenwert des inneren } \\ & \text { Widerstands des Lagers }\left[\mathrm{N} / \mathrm{mm}^{2}\right] \end{aligned}$
G	$=$ Schubmodul [$\mathrm{N} / \mathrm{mm}^{2}$]
a	= kürzere Seite des Lagers [mm]
b	= längere Seite des Lagers [mm]
t	= Lagerdicke [mm]
$\alpha_{\text {bd }}$	= Winkelverdrehung um die Achse parallel zur Lagerseite b [\%]
$\alpha_{\text {ad }}$	= Winkelverdrehung um die Achse parallel zur Lagerseite a [\%]
c	$=\begin{gathered}\text { hauptbeanspruchte Lagerseite eines } \\ \text { rechteckigen Lagers [mm] }\end{gathered}$
n_{2}	= Seitenverhältnisbeiwert

b/a	η_{2}
1	0,208
1,5	0,231
2	0,246
3	0,267
4	0,282
6	0,299
8	0,307
10	0,313
∞	0,333

Tabelle 1:
$\boldsymbol{\eta}_{2}$ in Abhängigkeit des Seitenverhältnisses b/a als Wertetabelle
(Zwischenwerte dürfen linear interpoliert werden)
$\mathrm{f}_{\mathrm{tRd}}=\frac{\mathrm{R}_{\perp \mathrm{d}}}{\eta_{2}} \cdot \frac{\mathrm{t}}{\mathrm{a}} \quad \begin{aligned} & \mathbf{f}_{\mathrm{tRd}} \text { ist der Rechenwert des inneren Widerstands des Lagers und wird für die } \\ & \text { Berechnung der zulässigen Druckspannung } \boldsymbol{\sigma}_{\text {a }}\end{aligned}$ Berechnung der zulässigen Druckspannung $\boldsymbol{\sigma}_{\text {z,Rd }}$ hinzugezogen.

	Formfaktorbereich S ($\mathrm{S}, \mathrm{S}_{\text {Botrung }}$ oder $\mathrm{S}_{\mathrm{mod}}$)	Funktion zur Ermittlung des Bemessungswerts der Tragfähigkeit $\mathrm{R}_{\perp \mathrm{d}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$
Punkt- und Streifenlager	0,88-5,00	$\mathrm{R}_{\mathrm{dd}}=7,22 \cdot 5-3,39$
	5,00-7,00	$\mathrm{R}_{\mathrm{Ld}^{\prime}}=8,95 \cdot \mathrm{~S}-12,02$
	7,00-10,00	$\mathrm{R}_{\perp \mathrm{d}}=1,96 \cdot \mathrm{~S}+36,86$
	$\geq 10,00$	$\mathrm{R}_{\mathrm{Ld}^{\prime}}=56,50$

Tabelle 2:
$\mathrm{R}_{\mathrm{b}_{\mathrm{d}}}=$ Bemessungswert der zugehörigen Tragfähigkeit des Lagers [$\mathrm{N} / \mathrm{mm}^{2}$] senkrecht zur Lagerebene in Abhängigkeit des Formfaktors S bei einer Stauchung $\varepsilon=40 \%$.

ESZ Typ 150 | mit allgemeiner bauaufsichtlicher Zulassung Allgemeine Angaben und Berechnungsgrundlagen

Ausgangsannahmen

$\mathbf{F}_{\text {Z,max }, \mathrm{d}}$	$=200$	kN
$\mathbf{f}_{\text {tRd }}$	$=$ Formel	$\mathrm{N} / \mathrm{mm}^{2}$
\mathbf{a}	$=130$	mm
\mathbf{b}	$=150$	mm
\mathbf{t}	$=15$	mm
\mathbf{G}	$=1,2$	$\mathrm{~N} / \mathrm{mm}^{2}$
$\boldsymbol{\alpha}_{\text {Statik }}$	$=5,2$	$\%$
$\boldsymbol{\alpha}_{\text {Schiefwinkligkeit }}$	$=10$	$\%$
$\boldsymbol{\alpha}_{\text {Unebenheit }}$	$=4,8$	$\%$
$\boldsymbol{\alpha}_{\text {bd gesamt }}$	$=20$	$\%$
$\boldsymbol{\eta}_{2}$	$=0,215$	

In diesem Berechnungsbeispiel wird mit einer Verdrehung um die Achse parallel zur Lagerseite b ($a_{b d}$) gerechnet.
Das Lager hat keine Bohrungen.

Rechenweg

$S=\frac{130 \cdot 150}{2 \cdot 15 \cdot(130+150)}=2,32$
$R_{\perp d}=7,22 \cdot S-3,39=7,22 \cdot 2,32-3,39=13,36 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{t R d}=\frac{13,37}{0,215} \cdot \frac{15}{130}=\mathbf{7 , 1 8} \mathbf{N} / \mathbf{m m}^{2}$
$\sigma_{\mathrm{z}, \mathrm{Rd}}=\left[7,18-0,02 \cdot \frac{1,2}{2} \cdot\left(\frac{130}{15}\right)^{2}-0 \cdot \frac{1,2}{2} \cdot\left(\frac{150}{15}\right)^{2}\right] \cdot \frac{130}{15} \cdot 0,215=\mathbf{1 1}, \mathbf{7 0} \mathbf{N} / \mathbf{m m}^{2}$
$\sigma_{\mathrm{z}, \mathrm{m}}=\frac{200.000}{130 \cdot 150}=\mathbf{1 0}, \mathbf{2 6} \mathbf{N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{z}, \mathrm{Rd}}=11,70 \mathrm{~N} / \mathrm{mm}^{2} \geq \sigma_{\mathrm{m}}=10,26 \mathrm{~N} / \mathrm{mm}^{2}>$ Nachweis erbracht!

