ESZ Typ 100 | mit allgemeiner bauaufsichtlicher Zulassung Allgemeine Angaben und Berechnungsgrundlagen

Zeichenbedeutungen in der Formel

f _{tRd}	=	Rechenwert des inneren Widerstands des Lagers [N/mm²]	
G	=	Schubmodul [N/mm²]	
а	=	kürzere Seite des Lagers [mm]	
b	=	längere Seite des Lagers [mm]	
t	=	Lagerdicke [mm]	
α _{bd}	=	Winkelverdrehung um die Achse parallel zur Lagerseite b [‰]	
α_{ad}	=	Winkelverdrehung um die Achse parallel zur Lagerseite a [‰]	
с	=	hauptbeanspruchte Lagerseite eines rechteckigen Lagers [mm]	
η2	=	Seitenverhältnisbeiwert	

_		
b/a	η2	
1	0,208	
1,5	0,231	
2	0,246	
3	0,267	
4	0,282	
6	0,299	
8	0,307	
10	0,313	
ω	0,333	
		1

Tabelle 1:

n₂ in Abhängigkeit des Seitenverhältnisses
 b/a als Wertetabelle
 (Zwischenwerte dürfen linear interpoliert werden)

$$f_{tRd} = \frac{R_{\perp d}}{\eta_2} \cdot \frac{t}{a}$$

 f_{trd} ist der Rechenwert des inneren Widerstands des Lagers und wird für die Berechnung der zulässigen Druckspannung $\sigma_{z,rd}$ hinzugezogen.

	Formfaktorbereich S (S, S _{Bohrung} oder S _{mod})	Funktion zur Ermittlung des Bemessungswerts der Tragfähigkeit R⊥d [N/mm²]
	0,83 - 2,33	R _{⊥d} = 5,3805 · S - 0,6536
Punkt- und Streifenlager	2,33 - 2,50	R _{⊥d} = 10,635 · S - 12,89
Funkt und Stienentager	2,50 - 5,00	R _{⊥d} = 8,4004 · S - 7,3293
	≥ 5,00	R _{⊥d} = 34,7

Tabelle 2:

 $\mathbf{R}_{\perp d}$ = Bemessungswert der zugehörigen Tragfähigkeit des Lagers [N/mm²] senkrecht zur Lagerebene in Abhängigkeit des Formfaktors S bei einer Stauchung ε = 40 %.

Weilerhöfe 1 41564 Kaarst-Büttgen Tel.: +49 2131 75 81 00 Fax.: +49 2131 75 81 11 info@esz-becker.de

Startseite Δ

ESZ Typ 100 | mit allgemeiner bauaufsichtlicher Zulassung Allgemeine Angaben und Berechnungsgrundlagen

Ausgangsannahmen

F _{z,max,d}	=	185	kN
f _{tRd}	=	Formel	N/mm²
а	=	130	mm
b	=	150	mm
t	=	15	mm
G	=	1,2	N/mm²
α _{Statik}	=	5,2	‰
$oldsymbol{lpha}$ Schiefwinkligkeit	=	10	‰
$oldsymbol{lpha}_{Unebenheit}$	=	4,8	‰
$oldsymbol{lpha}_{ ext{bd gesamt}}$	=	20	‰
η 2	=	0,215	

In diesem Berechnungsbeispiel wird mit einer Verdrehung um die Achse parallel zur Lagerseite b (α_{bd}) gerechnet. Das Lager hat keine Bohrungen.

Rechenweg

$$S = \frac{130 \cdot 150}{2 \cdot 15 \cdot (130 + 150)} = 2,32$$

$$R_{\perp d} = 5,3805 \cdot S - 0,6536 = 17,17 \cdot 2,32 - 0,6536 = 11,83 \text{ N/mm}^2$$

$$f_{tRd} = \frac{11,83}{0,215} \cdot \frac{15}{130} = 6,35 \text{ N/mm}^2$$

$$\sigma_{z,Rd} = \left[6,35 - 0,02 \cdot \frac{1,2}{2} \cdot \left(\frac{130}{15}\right)^2 - 0 \cdot \frac{1,2}{2} \cdot \left(\frac{150}{15}\right)^2\right] \cdot \frac{130}{15} \cdot 0,215 = 10,15 \text{ N/mm}^2$$

$$\sigma_{z,m} = \frac{185.000}{130 \cdot 150} = 9,49 \text{ N/mm}^2$$

 $\sigma_{z,Rd}$ = 10, 14 N/mm² $\,\geq \sigma_m$ = 9,49 N/mm² > Nachweis erbracht!

Weilerhöfe 1 41564 Kaarst-Büttgen Tel.: +49 2131 75 81 00 Fax.: +49 2131 75 81 11 info@esz-becker.de

Startseite Δ